Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions
نویسندگان
چکیده
Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.
منابع مشابه
اثر چرای دراز مدت بر پویایی کربن لاشبرگ در اکوسیستم مرتعی سبزکوه استان چهارمحال و بختیاری
Over-grazing may induce changes in the dynamics of plant residue carbon and soil organic carbon (SOC). The objective of this study was to evaluate the litter quality of three dominant pasture species, and the relationship between litter quality and C dynamics under different range managements in native rangelands of SabzKou. Aboveground litters from three dominant species including, Agropyron i...
متن کاملاثر چرای دراز مدت بر پویایی کربن لاشبرگ در اکوسیستم مرتعی سبزکوه استان چهارمحال و بختیاری
Over-grazing may induce changes in the dynamics of plant residue carbon and soil organic carbon (SOC). The objective of this study was to evaluate the litter quality of three dominant pasture species, and the relationship between litter quality and C dynamics under different range managements in native rangelands of SabzKou. Aboveground litters from three dominant species including, Agropyron i...
متن کاملSoil moisture and soil-litter mixing effects on surface litter decomposition: A controlled environment assessment
Recent studies suggest the long-standing discrepancy between measured and modeled leaf litter decomposition in drylands is, in part, the result of a unique combination of abiotic drivers that include high soil surface temperature and radiant energy levels and soil-litter mixing. Temperature and radiant energy effects on litter decomposition have been widely documented. However, under field cond...
متن کاملAssessment of Fire Effects on Surface Cover Changes and Forage Production (Case Study: Delfan County, Lorestan Province, Iran)
The aim of this study was to assess the regional effects of fire on the surface cover and forage production of mountainous rangelands of Delfan County, Lorestan province, Iran. The fire took placed in June 2007 with significant effects on the vegetation characteristics in the study area. Four fire affected sites were selected for sampling and a close area without fire was considered as control....
متن کاملLong-term burning interacts with herbivory to slow decomposition.
Fires can generate spatial variation in trophic interactions such as insect herbivory. If trophic interactions mediated by fire influence nutrient cycling, they could feed back on the more immediate consequences of fire on nutrient dynamics. Here we consider herbivore-induced effects on oak litter quality and decomposition within a long-term manipulation of fire frequency in central Minnesota, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017